The Mastery of the Air Part 5

/

The Mastery of the Air



The Mastery of the Air Part 5


A few years later Stringfellow designed a tiny steam-engine, which he fitted to an equally tiny monoplane, and it is said that by its aid he was able to obtain a very short flight through the air. As some recognition of his enterprise the Aeronautical Society, which was founded in 1866, awarded him a prize of L100 for his engine.

The idea of producing a practical form of flying machine was never abandoned entirely. Here and there experiments continued to be carried out, and certain valuable conclusions were arrived at. Many advanced thinkers and writers of half a century ago set forth their opinions on the possibilities of human flight. Some of them, like Emerson, not only believed that flight would come, but also stated why it had not arrived.

Thus Emerson, when writing on the subject of air navigation about fifty years ago, remarked: "We think the population is not yet quite fit for them, and therefore there will be none. Our friend suggests so many inconveniences from piracy out of the high air to orchards and lone houses, and also to high fliers, and the total inadequacy of the present system of defence, that we have not the heart to break the sleep of the great public by the repet.i.tion of these details. When children come into the library we put the inkstand and the watch on the high shelf until they be a little older."

About the year 1870 a young German engineer, named Otto Lilienthal, began some experiments with a motorless glider, which in course of time were to make him world-famed. For nearly twenty years Lilienthal carried on his aerial research work in secrecy, and it was not until about the year 1890 that his experimental work was sufficiently advanced for him to give demonstrations in public.

The young German was a firm believer in what was known as the "soaring-plane" theory of flight. From the picture here given we can get some idea of his curious machine. It consisted of large wings, formed of thin osiers, over which was stretched light fabric. At the back were two horizontal rudders shaped somewhat like the long forked tail of a swallow, and over these was a large steering rudder. The wings were arranged around the glider's body. The whole apparatus weighed about 40 pounds.

Lilienthal's flights, or glides, were made from the top of a specially-constructed large mound, and in some cases from the summit of a low tower. The "birdman" would stand on the top of the mound, full to the wind, and run quickly forward with outstretched wings. When he thought he had gained sufficient momentum he jumped into the air, and the wings of the glider bore him through the air to the base of the mound.

To preserve the balance of his machine--always a most difficult feat--he swung his legs and hips to one side or the other, as occasion required, and, after hundreds of glides had been made, he became so skilful in maintaining the equilibrium of his machine that he was able to cover a distance, downhill, of 300 yards.

Later on, Lilienthal abandoned the glider, or elementary form of monoplane, and adopted a system of superposed planes, corresponding to the modern biplane. The promising career of this clever German was brought to an untimely end in 1896, when, in attempting to glide from a height of about 80 yards, his apparatus made a sudden downward swoop, and he broke his neck.

Now that Lillenthal's experiments had proved conclusively the efficiency of wings, or planes, as carrying surfaces, other engineers followed in his footsteps, and tried to improve on his good work.

The first "birdman" to use a glider in this country was Mr. Percy Pilcher who carried out his experiments at Cardross in Scotland. His glides were at first made with a form of apparatus very similar to that employed by Lilienthal, and in time he came to use much larger machines. So c.u.mbersome, however, was his apparatus--it weighed nearly 4 stones--that with such a great weight upon his shoulders he could not run forward quickly enough to gain sufficient momentum to "carry off"

from the hillside. To a.s.sist him in launching the apparatus the machine was towed by horses, and when sufficient impetus had been gained the tow-rope was cast off.

Three years after Lilienthal's death Pilcher met with a similar accident. While making a flight his glider was overturned, and the unfortunate "birdman" was dashed to death.

In America there were at this time two or three "human birds", one of the most famous being M. Octave Chanute. During the years 1895-7 Chanute made many flights in various types of gliding machines, some of which had as many as half a dozen planes arranged one above another. His best results, however, were obtained by the two-plane machine, resembling to a remarkable extent the modern biplane.

CHAPTER XVII. The Aeroplane and the Bird

We have seen that the inventors of flying machines in the early days of aviation modelled their various craft somewhat in the form of a bird, and that many of them believed that if the conquest of the air was to be achieved man must copy nature and provide himself with wings.

Let us closely examine a modern monoplane and discover in what way it resembles the body of a bird in build.

First, there is the long and comparatively narrow body, or FUSELAGE, at the end of which is the rudder, corresponding to the bird's tail. The cha.s.sis, or under carriage, consisting of wheels, skids, &c., may well be compared with the legs of a bird, and the planes are very similar in construction to the bird's wings. But here the resemblance ends: the aeroplane does not fly, nor will it ever fly, as a bird flies.

If we carefully inspect the wing of a bird--say a large bird, such as the crow--we shall find it curved or arched from front to back. This curve, however, is somewhat irregular. At the front edge of the wing it is sharpest, and there is a gradual dip or slope backwards and downwards. There is a special reason for this peculiar structure, as we shall see in a later chapter.

Now it is quite evident that the inventors of aeroplanes have modelled the planes of their craft on the bird's wing. Strictly speaking, the word "plane" is a misnomer when applied to the supporting structure of an aeroplane. Euclid defines a plane, or a plane surface, as one in which, any two points being taken, the straight line between them lies wholly in that surface. But the plane of a flying machine is curved, or CAMBERED, and if one point were taken on the front of the so-called plane, and another on the back, a straight line joining these two points could not possibly lie wholly on the surface.

All planes are not cambered to the same extent: some have a very small curvature; in others the curve is greatly p.r.o.nounced. Planes of the former type are generally fitted to racing aeroplanes, because they offer less resistance to the air than do deeply-cambered planes. Indeed, it is in the degree of camber that the various types of flying machine show their chief diversity, just as the work of certain shipmasters is known by the particular lines of the bow and stern of the vessels which are built in their yards.

Birds fly by a flapping movement of their wings, or by soaring. We are quite familiar with both these actions: at one time the bird propels itself by means of powerful muscles attached to its wings by means of which the wings are flapped up and down; at another time the bird, with wings nicely adjusted so as to take advantage of all the peculiarities of the air currents, keeps them almost stationary, and soars or glides through the air.

The method of soaring alone has long since been proved to be impracticable as a means of carrying a machine through the air, unless, of course, one describes the natural glide of an aeroplane from a great height down to earth as soaring. But the flapping motion was not proved a failure until numerous experiments by early aviators had been tried.

Probably the most successful attempt at propulsion by this method was that of a French locksmith named Besnier. Over two hundred years ago he made for himself a pair of light wooden paddles, with blades at either end, somewhat similar in shape to the double paddle of a canoe. These he placed over his shoulders, his feet being attached by ropes to the hindmost paddles. Jumping off from some high place in the face of a stiff breeze, he violently worked his arms and legs, so that the paddles beat the air and gave him support. It is said that Besnier became so expert in the management of his simple apparatus that he was able to raise himself from the ground, and skim lightly over fields and rivers for a considerable distance.

Now it has been shown that the enormous extent of wing required to support a man of average weight would be much too large to be flapped by man's arm muscles. But in this, as with everything else, we have succeeded in harnessing the forces of nature into our service as tools and machinery.

And is not this, after all, one of the chief, distinctions between man and the lower orders of creation? The latter fulfil most of their bodily requirements by muscular effort. If a horse wants to get from one place to another it walks; man can go on wheels. None of the lower animals makes a single tool to a.s.sist it in the various means of sustaining life; but man puts on his "thinking-cap", and invents useful machines and tools to enable him to a.s.sist or dispense with muscular movement.

Thus we find that in aviation man has designed the propeller, which, by its rapid revolutions derived from the motive power of the aerial engine, cuts a spiral pathway through the air and drives the light craft rapidly forward. The chief use of the planes is for support to the machine, and the chief duty of the pilot is to balance and steer the craft by the manipulation of the rudder, elevation and warping controls.

CHAPTER XVIII. A Great British Inventor of Aeroplanes

Though, as we have seen, most of the early attempts at aerial navigation were made by foreign engineers, yet we are proud to number among the ranks of the early inventors of heavier-than-air machines Sir Hiram Maxim, who, though an American by birth, has spent most of his life in Britain and may therefore be called a British inventor.

Perhaps to most of us this inventor's name is known more in connection with the famous "Maxim" gun, which he designed, and which was named after him. But as early as 1894, when the construction of aeroplanes was in a very backward state, Sir Hiram succeeded in making an interesting and ingenious aeroplane, which he proposed to drive by a particularly light steam-engine.

Sir Hiram's first machine, which was made in 1890, was designed to be guided by a double set of rails, one set arranged below and the other above its running wheels. The intention was to make the machine raise itself just off the ground rails, but yet be prevented from soaring by the set of guard rails above the wheels, which acted as a check on it.

The motive force was given by a very powerful steam-engine of over 300 horse-power, and this drove two enormous propellers, some 17 feet in length. The total weight of the machine was 8000 pounds, but even with this enormous weight the engine was capable of raising the machine from the ground.

For three or four years Sir Hiram made numerous experiments with his aeroplane, but in 1894 it broke through the upper guard rail and turned itself over among the surrounding trees, wrecking itself badly.

But though the Maxim aeroplane did not yield very practical results, it proved that if a lighter but more powerful engine could be made, the chief difficulty iii the way of aerial flight would be removed. This was soon forthcoming in the invention of the petrol motor. In a lecture to the Scottish Aeronautical Society, delivered in Glasgow in November, 1913, Sir Hiram claimed to be the inventor of the first machine which actually rose from the earth. Before the distinguished inventor spoke of his own work in aviation he recalled experiments made by his father in 1856-7, when Sir Hiram was sixteen years of age. The flying machine designed by the elder Maxim consisted of a small platform, which it was proposed to lift directly into the air by the action of two screw-propellers revolving in reverse directions. For a motor the inventor intended to employ some kind of explosive material, gunpowder preferred, but the lecturer distinctly remembered that his father said that if an apparatus could be successfully navigated through the air it would be of such inevitable value as a military engine that no matter how much it might cost to run it would be used by Governments.

Of his own claim as an inventor of air-craft it would be well to quote Sir Hiram's actual words, as given by the Glasgow Herald, which contained a full report of the lecture.

"Some forty years ago, when I commenced to think of the subject, my first idea was to lift my machine by vertical propellers, and I actually commenced drawings and made calculations for a machine on that plan, using an oil motor, or something like a Brayton engine, for motive power. However, I was completely unable to work out any system which would not be too heavy to lift itself directly into the air, and it was only when I commenced to study the aeroplane system that it became apparent to me that it would be possible to make a machine light enough and powerful enough to raise itself without the agency of a balloon.

From the first I was convinced that it would be quite out of the question to employ a balloon in any form. At that time the light high-speed petrol motor had no existence. The only power available being steam-engines, I made all my calculations with a view of using steam as the motive power. While I was studying the question of the possibility of making a flying machine that would actually fly, I became convinced that there was but one system to work on, and that was the aeroplane system. I made many calculations, and found that an aeroplane machine driven by a steam-engine ought to lift itself into the air."

Sir Hiram then went on to say that it was the work of making an automatic gun which was the direct cause of his experiments with flying machines. To continue the report:

"One day I was approached by three gentlemen who were interested in the gun, and they asked me if it would be possible for me to build a flying machine, how long it would take, and how much it would cost. My reply was that it would take five years and would cost L50,000. The first three years would be devoted to developing a light internal-combustion engine, and the remaining two years to making a flying machine.

"Later on a considerable sum of money was placed at my disposal, and the experiments commenced, but unfortunately the gun business called for my attention abroad, and during the first two years of the experimental work I was out of England eighteen months.

"Although I had thought much of the internal-combustion engine it seemed to me that it would take too long to develop one and that it would be a hopeless task in my absence from England; so I decided that in my first experiments at least I would use a steam-engine. I therefore designed and made a steam-engine and boiler of which Mr. Charles Parsons has since said that, next to the Maxim gun, it developed more energy for its weight than any other heat engine ever made. That was true at the time, but is very wide of the mark now."

Speaking of motors, the veteran lecturer remarked: "Perhaps there was no problem in the world on which mathematicians had differed so widely as on the problem of flight. Twenty years ago experimenters said: 'Give us a motor that will develop 1 horse-power with the weight of a barnyard fowl, and we will very soon fly.' At the present moment they had motors which would develop over 2 horse-power and did not weigh more than a 12-pound barnyard fowl. These engines had been developed--I might say created--by the builders of motor cars. Extreme lightness had been gradually obtained by those making racing cars, and that had been intensified by aviators. In many cases a speed of 80 or 100 miles per hour had been attained, and machines had remained in the air for hours and had flown long distances. In some cases nearly a ton had been carried for a short distance."

Such words as these, coming from the lips of a great inventor, give us a deep insight into the working of the inventor's mind, and, incidentally, show us some of the difficulties which beset all pioneers in their tasks. The science of aviation is, indeed, greatly indebted to these early inventors, not the least of whom is the gallant Sir Hiram Maxim.

CHAPTER XIX. The Wright Brothers and their Secret Experiments

In the beginning of the twentieth century many of the leading European newspapers contained brief reports of aerial experiments which were being carried out at Dayton, in the State of Ohio, America. So wonderful were the results of these experiments, and so mysterious were the movements of the two brothers--Orville and Wilbur Wright--who conducted them, that many Europeans would not believe the reports.

No inventors have gone about their work more carefully, methodically, and secretly than did these two Americans, who, hidden from prying eyes, "far from the madding crowd", obtained results which brought them undying fame in the world of aviation.

For years they worked at their self-imposed task of constructing a flying machine which would really soar among the clouds. They had read brief accounts of the experiments carried out by Otto Lilienthal, and in many ways the ground had been well paved for them. It was their great ambition to become real "human birds"; "birds" that would not only glide along down the hillside, but would fly free and unfettered, choosing their aerial paths of travel and their places of destination.

Though there are few reliable accounts of their work in those remote American haunts, during the first six years of the present century, the main facts of their life-history are now well known, and we are able to trace their experiments, step by step, from the time when they constructed their first simple aeroplane down to the appearance of the marvellous biplane which has made them world-famed.

For some time the Wrights experimented with a glider, with which they accomplished even more wonderful results than those obtained by Lilienthal. These two young American engineers--bicycle-makers by trade--were never in a hurry. Step by step they made progress, first with kites, then with small gliders, and ultimately with a large one.

The latter was launched into the air by men running forward with it until sufficient momentum had been gained for the craft to go forward on its own account.






Tips: You're reading The Mastery of the Air Part 5, please read The Mastery of the Air Part 5 online from left to right.You can use left, right, A and D keyboard keys to browse between chapters.Use F11 button to read novel in full-screen(PC only).

The Mastery of the Air Part 5 - Read The Mastery of the Air Part 5 Online

It's great if you read and follow any Novel on our website. We promise you that we'll bring you the latest, hottest Novel everyday and FREE.


Top